Presented by: TIMOTHY D. STARK & JIALE LIN University of Illinois at Urbana-Champaign <u>tstark@Illinois.edu</u>

Presented to: Queensland Tailings Group Brisbane, Australis June 9, 2022

Fundao Failure Outline

- 5 November 2015 Failure
- Field observations
- Subsurface investigation
- Effect of blasting and earthquakes
- Slope stability analyses
- Time of Failure
- Summary
- Olson & Stark (2003) Update

Piezometric Levels

T.D.Stark-Slides-©

Figure B6-12 Longitudinal section from left to right abutment (Morgenstern et al., 2016)

Witness Location and Description

#9: Avalanche of mud-like tailings cascaded down. The starter dam had no movement

#5: Crack open up along crest ofleft abutment setback andpropagating in both direction

(Morgenstern et al., 2016)

Outline

- 5 November 2015 Failure
- Chronology of events
- Field observations
- Subsurface investigation
- Effect of blasting and earthquakes
- Slope stability analyses
- Time of Failure
- Summary

Pre-Failure CPT and SPT locations

1 June 22 2015 Samarco aerial image shown

Fundão Tailings Dam Review Panel

(Morgenstern et al., 2016)

Cross-Section 02– Left Abutment

T.D.Stark-Slides-©

Sand tailings and slime particle distribution

8/51

PARTICLE SIZE DISTRIBUTION

Figure D4-1 Particle size distribution of field sand tailings and slimes samples

2015 Fundao Tailings Dam Failure

T.D.Stark-Slides-©

Piezometric Levels

T.D.Stark-Slides-©

Figure B6-12 Longitudinal section from left to right abutment (Morgenstern et al., 2016)

Pre-Failure Earthquakes

Pre-failure earthquakes on November 5, 2015 (Atkinson, 2016)

Local Time	Moment Magnitude Mw	Distance from Fundao	Event		
2:12:15 pm	2.2	<2 km	earthquake (foreshock)		
2:13:51 pm	2.6	<2 km	earthquake (main shock)		
2:16:03 pm	1.8	<2 km	earthquake (aftershock)		
2:36-2:46 pm	Dam Failure				

Eyewitness Accounts:

- Shaking strong enough to cause computer to fall from tabletop and minor structural cracking (Morgenstern et al., 2016)
- Viviane Rezende -2^{nd} eqk shook truck on dam
- Daviely Silva Desk shaking & broken glass
- MMI ~ 5 to 6

Pre-Failure Earthquakes

Ciardelli and Assumpacao (2019) Epicenter coordinates

T.D.Stark-Slides-©

Pre-Failure Earthquakes

Eyewitness Accounts of 11/5/15 Earthquakes:

- Shaking strong enough to cause computer to fall from tabletop and minor structural cracking (Morgenstern et al., 2016)
- Viviane Rezende -2^{nd} eqk shook truck on dam
- Daviely Silva Desk shaking & broken glass
- **MMI** ~ 5 to 6
- $M \sim 4 \text{ to } 5$

Modified Mercalli Scale

- I. Not felt.
- II. Felt by persons at rest, on upper floors, or favorably placed.
- III. Felt indoors. Vibration like passing of light trucks.
- IV. Vibration like passing of heavy trucks.
- V. Felt outdoors. Small unstable objects displaced or upset.
- VI. Felt by all. Furniture moved. Weak plaster/masonry cracks.
- VII. Difficult to stand. Damage to masonry and chimneys.
- VIII. Partial collapse of masonry. Frame houses moved.
 - IX. Masonry seriously damaged or destroyed.
 - X. Many buildings and bridges destroyed.
 - XI. Rails bent greatly. Pipelines severely damaged.
- XII. Damage nearly total.

Richter Magnitude	Earthquake effects				
0-2	Not felt by people				
2-3	Felt little by people				
3-4	Ceiling lights swing				
4-5	Walls crack				
5-6	Furniture moves				
6-7	Some buildings collapse				
7-8	Many buildings destroyed				
8-Up Total destruction of buildings bridges and roads					

https://earthquakenepal2015.weebly.com/the-richter-scale-and-modifiedmercalli-intensity-scale.html

Seismic History

Reference: Atkinson, G. (2015). Ground Motion Prediction Equation for Small-to-Moderate Events at Short Hypocentral Distances, with Application to Induced-Seismicity Hazards. Bull. Seism. Soc. Am.,
T.D.Stark-Slides-© 105, doi: 10.1785/0120140142

Cross-Section 02– Left Abutment

T.D.Stark-Slides-©

Cross-Section 02– Left Abutment

T.D.Stark-Slides-©

Excess Pore Pressure Ratio

Modified from Marcuson et al. (1990)

Stark et al. (2021) Pore-Water Pressure Generation During Closely Spaced Earthquakes: Fundão Dam (in publishing)

Pre-Failure CPT Data-FUND 06-CPT

(Morgenstern et al., 2016)

18/51

Tailings Sand_{Slope}: Depth = 4.25 m

T.D.Stark-Slides-©

Pre-Failure CPT Data-FUND 06-CPT

10 20 30 0 872 0 Compacted sand SandSlope 868 4 SandSlope Elevation (m) Depth (m) 864 Normal loose sand tailings 860 12 856 16 10 20 30 0 Tip Resistance, qt (Mpa)

Tailings Sand_{Slope}: Depth = 4.57 m

T.D.Stark-Slides-©

Pre-Failure Site Response Analysis

T.D.Stark-Slides-©

Pre-Failure Site Response Analysis

Tailings Sand_{Slope}: Depth = 4.57 m

T.D.Stark-Slides-©

Pre-Failure CPT Data-FUND 06-CPT

T.D.Stark-Slides-©

Excess Pore Pressure Ratio

Modified from Marcuson et al. (1990)

Stark et al. (2021) Pore-Water Pressure Generation During Closely Spaced Earthquakes: Fundão Dam (in publishing)

Witness Location and Description

#4: waves developed in the central portion of the reservoir, accompanied by cracks forming on the left side and blocks of sand moving up and down on the left abutment setback

T.D.Stark-Slides-©

(Morgenstern et al., 2016)

Pre-Failure CPT Data-FUND 16-CPT

25/51

Tailings Sand_{Toe}:

- Apparent fines content ~ 10% & Depth = 3.76 m

T.D.Stark-Slides-©

Cross-Section 02– Left Abutment

T.D.Stark-Slides-©

Pre-Failure CPT Data-FUND 16-CPT

Pre-Failure SPT Data-FUND 15-SPT

Tailings Sand_{Plateau}:

- Apparent fines content $\sim 10\%$
- Clay size fraction < 2% (Morgenstern et al., 2016)
- Silt deposit has no cohesion

T.D.Stark-Slides-©

(Morgenstern et al., 2016)

Cross-Section 02– Left Abutment

T.D.Stark-Slides-©

Pre-Failure SPT Data-FUND 15-SPT

Sand_{Plateau} Depth = 5.0 mFS>1.5

T.D.Stark-Slides-©

Cross-Section 02 – Total r_u Values

T.D.Stark-Slides-©

31<u>/51</u>

Cyclic Direct Simple Shear Testis – Attachment D5

• 0 to 30 cycles -CSR = 0.01 = 10*CSR at Slimes

- 30 to 60 cycles CSR = 0.05 \sim CSR at Left Abutment Setback
- 60 to 90 cycles CSR = 0.1 \sim Panel CSR

T.D.Stark-Slides-©

Critical state line – Sand_{Slope}

T.D.Stark-Slides-©

Critical state line – Sand_{Plateau}

Critical state line – Sand_{Toe}

Liquefied Strength

Outline

- 5 November 2015 Failure
- Chronology of events
- Field observations
- Subsurface investigation
- Effect of blasting and earthquakes
- Slope stability analyses
- Time of Failure
- Summary

Slope Stability Analyses

Limit Equilibrium Input Parameters

Material Type	Color	Strength Type	Effective cohesion, c' (kPa)	Effective friction angle, ¢' (°)	Liquefied s _u /σ _v ' Ratio	r _u
Sand Tailing		Mohr- Coulomb		33		
Compacted Sand		Mohr- Coulomb	5	35		
Foundation		Mohr- Coulomb		40		
Sand _{Toe}		Mohr- Coulomb		22	0.03	
Sand _{Plateau}		Mohr- Coulomb		22		0.42
Sand _{Slope}		Mohr- Coulomb		22	0.03	

Total Unit Weight = 22.0 kN/m^3

Outline

- 5 November 2015 Failure
- Chronology of events
- Field observations
- Subsurface investigation
- Effect of blasting and earthquakes
- Slope stability analyses
- Time of Failure
- Summary

Time of Failure After Earthquakes

Eyewitness Accounts:

- Rodrigues-Silva at Plant 2 travels to dam w/in 15 to 20 min failed
- Silverio-Silva's email to University of Brasilia Seismology Department, 15 min
- Failure within 30 min of shaking

Failure after Shaking

- 1971 Lower San Fernando Dam Slide– minutes after shaking Seed et al. (1973)
- 1978 Mochikoshi Tailings Dam Failure 24 hours after shaking Ishihara (1984)
- 2018 Palu, Indonesia Flowslide two to three minutes after shaking Mason et al. (2018)

- Tailings dam stability
 - consider dynamic loads
- Fundao Tailings Dam Failure
 - accumulation of excess pore-water pressures
 - not at large depths
- Tailings Dam Failure usually results in an Environmental Problem

Cross-Section 02– Left Abutment

Comparison of Failure Surfaces

Cross-Section 02– Left Abutment

Liquefied Strength Ratio

Fig. 7. Relationships separating contractive from dilative conditions using flow failure case histories and corrected SPT blowcount (bars indicate ranges of penetration test values and prefailure effective stresses)

Fig. 8. Relationships separating contractive from dilative conditions using flow failure case histories and corrected CPT tip resistance (bars indicate ranges of penetration test values and prefailure vertical effective stresses)

Liquefied Strength

Fig. 1. Schematic undrained response of saturated sandy soil subjected to static and dynamic loads.

Five Step Process:

- 1) Assess static liquefaction potential,
- 2) Perform liquefaction triggering analysis,
- 3) If liquefaction not triggered, assess shear-induced pore-water pressure due to small vibrations,
- 4) Assign yield and liquefied strength, and
- 5) Conduct post-triggering stability analysis to assess flow failure potential

Step 1: Assess static liquefaction potential of Segments

- Not Contractive & Dilative

Step 2: Liquefaction triggering analysis

- Not Contractive & Dilative &
- Olson & Stark (2003) Mean not upper bound

Step 3: If NO triggering, estimate shear-induced pore-water pressures

Step 4: Assign yield and liquefied strengths

- Static liquefaction chart Left of trend line
- $FOS_{Liq} \le 1.0$
- Effective stress left of CSL or $r_u > 0.7$

Step 5: Post-triggering stability analysis

- $FOS_{Flow} \le 1.0 \Longrightarrow$ flow failure
- $FOS_{Flow} = 1.0$ to 1.1 => permanent deformations
- $FOS_{Flow} = 1.0$ to 1.1 => permanent deformations, if

 $FOS_{Tiggering} < 1.1 \Rightarrow$ assign liquefied strength & calc FOS_{Flow}

- $1.2 < FOS_{Flow} < 1.3 =>$ calculate permanent deformations
- $FOS_{Flow} > 1.2$ to $1.3 \Rightarrow$ no action

Presented by: TIMOTHY D. STARK & JIALE LIN University of Illinois at Urbana-Champaign <u>tstark@Illinois.edu</u>

Presented to: Queensland Tailings Group Brisbane, Australis June 9, 2022

