Flow Failure Assessment for Dams and Embankments with Examples

TIMOTHY D. STARK, HYUNIL JUNG, AND JIALE LIN University of Illinois at Urbana-Champaign

1/75

tstark@Illinois.edu

Presented to: Queensland Tailings Group Brisbane, Australia Monday, February 12, 2024

Outline

- Recent Flow Failures
- Liquefied Strength
- Flow Failure Susceptibility
 - Contractive/dilative boundary
 - State parameter
- Five Step Procedure
- Application Examples
- Summary

2022 South African Flow Failure

30-40 mph (40-60 km/hour)

https://www.youtube.com/watch?v=k3kaQKI0h1E

September 11, 2022

Outline

- Recent Flow Failures
- Liquefied Strength
- Flow Failure Susceptibility
 - Contractive/dilative boundary
 - State parameter
- Five Step Procedure
- Application Examples
- Summary

Yield & Liquefied Strengths

• Depends on in-situ density and effective stress: State Parameter

Unknown Trigger=?

- Trend of assuming unknown trigger (no mechanism identified)
- Assumes soil liquefies
- All saturated, contractive soil is assigned liquefied strength
- Will result in FoS_{flow} << 1.0
- Does not match field observations
- Liquefied strength $\sim 1/3$ yield => FoS_{flow} 0.3 to 0.4
- Retrofit 2,584 upstream tailings dams worldwide (Stark et al., 2022)

Outline

- Recent Flow Failures
- Liquefied Strength
- Flow Failure Susceptibility
 - Contractive/dilative boundary
 - State parameter from CPT
- Five Step Procedure
- Application Examples
- Summary

Contractive/Dilative Boundary

8/75

Contractive/Dilative Boundary

Olson and Stark (2003)

9/75

Contractive/Dilative Boundary

1 tsf = 0.1 MPa 10/75

Stark et al. (2023)

• Use liquefied/possible liquefied not contractive/dilative

Outline

- Recent Flow Failures
- Liquefied Strength
- Flow Failure Susceptibility
 - Contractive/dilative boundary
 - State parameter from CPT
- Five Step Procedure
- Application Examples
- Summary

Drained Shear

Undrained Shear

Effective mean normal stress (log scale)

State parameter

- Critical state framework
- $\psi > 0.00$: static liquefaction triggering
- $\psi > -0.05$: dynamic liquefaction triggering (Fourie et al., 2022)
- Strong correlation with Q_p
- Verify with calibration chamber data

$$Q_p = \left(\frac{q_c - p_o}{p'_o}\right) \approx \left(\frac{q_c}{p'_o}\right)$$

•
$$p_0 = \text{mean } \sigma$$

• $p'_0 = \text{mean } \sigma'$

Develop ψ & CPT Correlation

15/75

• Use $Q_p = (q_c - p_0)/p_0'$ for stress level normalization

Calibration Chamber Correction

- Boundary effect correction
- $C_f = \left[\frac{(D_c/d_c)-1}{70}\right]^{-D_r/200}$ (D_c: chamber diameter; d_c: cone diameter)

ψ& CPT Correlation – 18 sands^{17/75}

ψ& CPT Correlation – 18 sands

ψ & CPT Correlation – 18 sands

19/<u>75</u>

Cavity Expansion Analysis

• Model CPT as expansion of a cavity

• Calculate Q_{p,expansion}

$$\psi_{expansion} = -\ln\left(\frac{Q_{p,expansion}}{1.64 * (G/p'_o)^{0.45}}\right) * \frac{1}{2.27(G/p'_o)^{0.16}}$$

20/75

ψ from Cavity Expansion

W Validation

Excel Spreadsheet

y Spreadsheet

Estimating W_{field} from field CPT measurements - January 20, 2024

(Use this Worksheet when G and λ_{10} are not available

Hyunil Jung & Timothy D. Stark

tstark@illinois.edu

3 input parameters $-\gamma_{sat} = 16-21$ kPa

1.4

66.0

44.0

- Graph shows liquefiable layers
- $\psi > 0.00 \& -0.05 = Contractive$

 $\psi_{field} = -\ln\left(\frac{Q_{p,field\ cpt}}{1.64 * (1.49 - \lambda) * (G/p_0')^{0.45}}\right) * \frac{1}{2.27(G/p_0')^{0.16}}$

449.9

3457.1

-0.19

24.6

T.D. Stark-©

ILLINOIS

Procedure Steps 1 & 2

Outline

- Recent Flow Failures
- Liquefied Strength
- Flow Failure Susceptibility
 - Contractive/dilative boundary
 - State parameter
- Five Step Procedure
- Application Examples
- Summary

Five Step Procedure (Stark et al., 2023):

- 1) Assess static liquefaction potential of segments along failure surface,
- 2) Assess dynamic liquefaction triggering of segments,
- 3) If liquefaction not triggered, assess shear-induced pore-water pressure due to small vibrations along failure surface,
- 4) Assign liquefied strength or ratio to segments, and
- 5) Conduct post-triggering stability analysis to assess flow failure potential.

Step 1a: Assess static liquefaction potential of segments using Ψ

•
$$Q_p = \left(\frac{q_c - p_o}{p'_o}\right) \approx \left(\frac{q_c}{p'_o}\right)_p$$

•
$$\Psi_{field} = -\ln\left(\frac{Q_{p,field\,cpt}}{1.64*(1.49-\lambda)*(G/p'_0)^{0.45}}\right)*\frac{1}{2.27(G/p'_0)^{0.16}}$$

- Use spreadsheet
- $\psi > 0.00$: apply liquefied strength

Step 1b: Assess static liquefaction potential of segments using Q_{c1}

- Not Contractive & Dilative

28/75

Step 2a: Assess dynamic liquefaction potential of segments using Ψ

• $Q_p = \left(\frac{q_c - p_o}{p'_o}\right) \approx \left(\frac{q_c}{p'_o}\right)_p$

•
$$\Psi_{field} = -\ln\left(\frac{Q_{p,field\,cpt}}{1.64*(1.49-\lambda)*(G/p'_0)^{0.45}}\right)*\frac{1}{2.27(G/p'_0)^{0.16}}$$

- Use spreadsheet
- $\psi > -0.05$: apply liquefied strength

Step 2b: Assess static liquefaction potential of segments using Q_{c1}

Steps 1 & 2: Static and Dynamic liquefaction triggering analysis using ψ

• Use graphs in spreadsheet

T.D. Stark-©

30/75

Step 3: If No triggering, estimate shear-induced pore-water pressures or effective mean stress reduction

- $\mathbf{r}_{u,total} = \mathbf{r}_{u,static} + \mathbf{r}_{u,dynamic}$

Excess Pore Pressure Ratio

Step 3: If No triggering, estimate shear-induced pore-water pressures or effective mean stress reduction

T.D. Stark-© Seed et al. (1976). "Pore-water pressure changes during soil liquefaction." J. Geotech. Engrg., 102(4), 323-346.

Step 4: Assign a liquefied strength (ratio) to segments if:

- Static liquefaction chart Left of trend line
- $FoS_{Liq} \le 1.0$
- Effective stress left of CSL
- $r_u \ge 0.7$

Yield & Liquefied Strengths

• $p'_0 = \text{mean } \sigma'$

- **Step 5**: Perform post-triggering stability analysis
 - $FoS_{Flow} \le 1.0 \Longrightarrow$ flow failure
 - $FoS_{Flow} = 1.0$ to 1.1 => permanent deformations, if

 $FoS_{Triggering} < 1.1$ segments => assign liquefied strength & calc FoS_{Flow}

- $1.2 < FoS_{Flow} < 1.3 \Rightarrow$ calculate permanent deformations
- $FoS_{Flow} > 1.2$ to $1.3 \Rightarrow$ no action required

Olson and Stark (2003)

Outline

- Recent Flow Failures
- Liquefied Strength
- Flow Failure Susceptibility
 - Contractive/dilative boundary
 - State parameter
- Five Step Procedure
- Application Examples
- Summary
Application Examples

- Case 1 Lateral Extrusion
- Case 2 Static/Drilling Pressure
- Case 3 Low Shaking
- Case 4 High Shaking

Case 1 – Lateral Extrusion

Mobilized Instability Ratio Contours

Response of Sand Tailings at Interface between Sand and Slimes Throughout Dyke Construction

- Soft slimes underlying saturated loose tailings (50 m depth)
- Decreases horizontal confining pressure
- No available CPT measurements of slimes

Case 1 – Lateral Extrusion

Steps 1&2: Assess static & dynamic liquefaction triggering of segments - No CPT so no Ψ

Step 3: Estimate mean effective stress reduction due to lateral extrusion

Case 1 – Lateral Extrusion

Step 4: Assign a liquefied strength (ratio) if

- Static liquefaction chart Left of trendline
- $FoS_{Liq} \le 1.0$
- Effective stress left of CSL
- $r_{u-total} \ge 0.7$

$\psi = 0.04$	$\psi = 0.01$
Possible Liquefied Strength	Possible Yield Strength
Effective stress at CSL	No triggers

Step 5: Perform post-triggering stability analysis

- $FoS_{\rm Flow} \sim 1.0$
- if $FoS_{Flow} \le 1.0 \Longrightarrow$ flow failure

Application Examples

- Case 1 Lateral Extrusion
- Case 2 Static/Drilling Pressure
- Case 3 Low Shaking
- Case 4 High Shaking

- Divide failure surface into several segments
- Local liquefaction near borehole overpressure
- Propagates throughout segment 3

• CPT measurements (CPT-1)

44/75

• CPT measurements (CPT-2)

• CPT measurements (CPT-3) – Segment 3

46/75

Steps 1&2: Static and dynamic liquefaction triggering analysis using ψ – Mostly ψ < 0.00, not liquefiable

• Use spreadsheet

Step 3: Estimate drilling-induced excess pore-water pressures - Assign liquefied strength to Segment 3

Decrease mean effective stress due to drilling pressures

Step 4: Assign a liquefied strength (ratio) if

- Static liquefaction chart Left of trendline
- $FoS_{Liq} \le 1.0$
- Effective stress left of CSL
- $r_{u_total} \ge 0.7$

Segment 1	Segment 2	Segment 3
Yield Strength	Yield Strength	Liquefied Strength
No trigger	No trigger	Effective stress left of CSL

Step 5: Perform post-triggering stability analysis

- $FoS_{Flow} \sim 1.0$
- $FoS_{Flow} \le 1.0 \Longrightarrow$ flow failure

Application Examples

- Case 1 Lateral Extrusion
- Case 2 Static/Drilling Pressure
- Case 3 Low Shaking
- Case 4 High Shaking

Case 3 – Low Shaking

(Stark et al., 2022)

CPT measurements - Sandslope

CPT measurements - SandPlateau

CPT measurements - Sand_{Toe}

Steps 1&2: Static and **dynamic** liquefaction triggering analysis using ψ - Assign liquefied strength to Sand_{Slope} & Sand_{Toe}

Sand_{Slope} • Use spreadsheet Sand_{Plateau}

Sand_{Toe}

Case 3 – Low Shaking

Steps 1&2: Static and dynamic liquefaction triggering analysis using q_{c1} - Assign liquefied strength to Sand_{Slope} & Sand_{Toe}

57/75

Pre-Failure Earthquakes

Step 3: If No triggering, estimate shear-induced pore-water pressures **Pre-failure earthquakes on November 5, 2015 (Atkinson, 2016)**

Local Time	Moment Magnitude Mw	Distance from Fundao	Event	
2:12:15 pm	2.2	<2 km	earthquake (foreshock)	
2:13:51 pm	2.6	<2 km	earthquake (main shock)	
2:16:03 pm	1.8	<2 km	earthquake (aftershock)	and a second
2:36-2:46 pm		Dam Fai	ilure	

Eyewitness Accounts:

- Shaking strong enough to cause computer to fall from tabletop and minor structural cracking (Morgenstern et al., 2016)
- Viviane Rezende -2^{nd} eqk shook truck on dam
- Daviely Silva Desk shaking & broken glass
- MMI ~ 5 to 6

Pre-Failure Earthquakes

Ciardelli and Assumpacao (2019) Epicenter coordinates

Excess Pore Pressure Ratio

Step 3: If No triggering, estimate shear-induced pore-water pressures

Seed, H.B., Martin, P.P., and Lysmer, J. (1976). "Pore-water pressure changes during soil liquefaction." *J. Geotech. Engrg.*, 102(4), 323-346.

Critical state line – Sand_{Slope}

Critical state line – Sand_{Plateau}

Critical state line – Sand_{Toe}

Case 3 – Low Shaking

Step 4: Assign a liquefied strength (ratio) if

- Static liquefaction chart Left of trendline
- $FoS_{Liq} \le 1.0$
- Effective stress left of CSL
- $r_{u_total} \ge 0.7$

Sand _{Slope}	Sand _{Plateau}	Sand _{Toe}
Liquefied Strength	Yield Strength	Liquefied Strength
Left of trendline	No trigger	Left of CSL

Step 5: Perform post-triggering stability analysis

- $FoS_{\rm Flow} \sim 1.0$
- if $FoS_{Flow} \le 1.0 \Longrightarrow$ flow failure

Slope Stability Analyses

Initial Condition: r_u=0.16

Final States: $r_u = 0.65/0.37/0.68$ Slope/Plateau/Toe

Application Examples

66/75

- Case 1 Lateral Extrusion
- Case 2 Static/Drilling Pressure
- Case 3 Low Shaking
- Case 4 High Shaking

• 1971 Upper San Fernando Dam

- San Fernando earthquake ($M_w = 6.1$), PGA = 0.6 g
- Small liquefaction-induced deformations

• SPT measurements

- Use q_c/N_{60} relationship (Stark and Olson, 1995)
- No available F_r data –liquefied/possible liquefied boundary

Steps 1&2: Assign liquefied strength to B-1, B-2 and B-4

Step 3: Estimate earthquake-induced excess pore-water pressures

Step 3: Estimate earthquake-induced excess pore-water pressures

T.D. Stark-©

B-1, 2, and 4 = liquefied strength

Step 4: Assign a liquefied strength (ratio) if

- Static liquefaction chart Left of trendline
- $FoS_{Liq} \le 1.0$
- Effective stress left of CSL
- $r_{u_total} \ge 0.7$

B-1	B-2	B-4	B-5
Liquefied Strength	Liquefied Strength	Liquefied Strength	Yield Strength
Left of trendline	Left of trendline	Left of trendline	No trigger

Step 5: Perform post-triggering stability analysis

- $FoS_{Flow} = 1.0$ to 1.1 => observed field permanent deformations
Outline

- Recent Flow Failures
- Liquefied Strength
- Flow Failure Susceptibility
 - Contractive/dilative boundary
 - State parameter
- Five Step Procedure
- Application Examples
- Summary

Summary

- Don't use contractive/dilative boundary
- Assess static and dynamic triggering
- Estimate shear-induced pore pressures & mean effective stress reduction
- Assign liquefied strength:
 - Static liquefaction chart Left of trend line
 - $\psi > 0.00$ or
 - Effective stress left of CSL
 - $-r_u > 0.7$
- Conduct post-triggering stability analysis

Flow Failure Assessment for Dams and Embankments with Examples

TIMOTHY D. STARK, HYUNIL JUNG, AND JIALE LIN University of Illinois at Urbana-Champaign

75/75

tstark@Illinois.edu

Presented to: Queensland Tailings Group Brisbane, Australia Monday, February 12, 2024

